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a b s t r a c t

An accurate treatment of the relativistic Vlasov–Maxwell system is of fundamental impor-
tance to a broad range of plasma physics topics, including laser–plasma interaction, trans-
port in solar and magnetospheric plasmas and magnetically confined plasmas. This paper
introduces VALIS: an algorithm for the numerical solution of the Vlasov–Maxwell system
in two spatial dimensions and two momentum dimensions.

Particular attention is given to the problems of particle gyromotion on Eulerian momen-
tum grids, satisfying Poisson’s equation without introducing additional workload or
altering the dispersion properties of the solver and the potential problems of applying
time-splitting algorithms to relativistic systems.

This work demonstrates that by adopting a conservative, split-Eulerian scheme based on
the Piecewise Parabolic Method for the update of the particle distribution function and uti-
lising the exact particle fluxes to calculate the current in the solution of Maxwell’s equa-
tions, these concerns can easily be addressed.

Crown Copyright � 2009 Published by Elsevier Inc. All rights reserved.
1. Introduction

The accurate modelling of kinetic plasma physics phemomena is of fundamental importance to a number of problems
including: laser absorption and subsequent transport in short-pulse laser-matter interaction [1–3]; growth and saturation
of parametric instabilities in long-pulse laser–plasma interaction [4–6]; the laser-driven particle accelerator [7,8]; thermal
transport in solar [9] and magnetospheric [10] plasmas; as well as non-linear effects in magnetically confined fusion devices
[11].

Kinetic models derive from a statistical treatment of the plasma retaining information about the distribution of particle
momenta. In addition to the conventional spatial dimensions, a kinetic model may have up to three velocity (or equivalently
momentum) dimensions. Together, these describe a phase space of up to six dimensions. The complexity of such models al-
lows the consideration of complex non-linear kinetic phenomena, but renders problems analytically and computationally
challenging. These models can be solved, together with the appropriate equations of electrodynamics, either directly or
via particle in cell (PIC) methods (see, for example, Refs. [12–14], and references therein). The PIC approach is widely adopted
2009 Published by Elsevier Inc. All rights reserved.
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owing to its flexibility, stability and underlying simplicity. The Vlasov approach proposed here is complimentary to the PIC
method, with each suited to different problems. The issue of when direct Vlasov or PIC should be used can be addressed by
following the argument presented by Besse et al. [15]. Here the ratio of the computational cost of Vlasov compared to PIC is
estimated as ðNv Þdv =npic where Nv is the number of points in velocity space used in the Vlasov code, dv is the number of veloc-
ity dimensions and npic is the number of particles per cell in the PIC code. PIC codes exhibit a noise level, i.e. fluctuations in
distribution function, which is inversely proportional to npic. Thus physics determines the required level of accuracy in the
distribution function, i.e. the order of magnitude of npic. Assuming Nv = 100 for a reasonable resolution by the Vlasov code it
is clear that for 1D velocity space problems that Vlasov is always the preferred method. In 2D velocity space the preferred
method depends on the problem. For instabilities which depend on the detailed structure of the distribution function one
would need npic ’ 104 and PIC and Vlasov would have comparable computational cost. If higher resolution is needed then
Vlasov is to be preferred. An example where Vlasov is always to be preferred is in the treatment of the Fokker–Planck col-
lision term. Collisional transport properties are determined by high-order velocity moments of the distribution function and
many thousands of PIC particles are required to achieve the accuracy of established Vlasov–Fokker–Planck codes [1,16,17].
This is because a raw estimate of the cost of running PIC based on npic misses the fact that very few of the npic particles are
present in the high energy tail of the distribution function where the resolution is needed most whereas for Vlasov the res-
olution in velocity space is uniform and noise free. For gross, large scale phenomena fewer particles are needed and PIC be-
comes the ideal choice for 2D velocity space. In 3D velocity space PIC codes are currently the only computationally tractable
approach.

Most numerical solutions to Vlasov’s equation adopt some form of time-splitting scheme [18,19]. Conservative [20,21]
and semi-Lagrangian [22] approaches have been most popular, but there are alternative schemes [23,24]. Most schemes
adopt a fixed Eulerian phase-space grid [26,27], but, for the case of collision dominated plasmas, the closely related Vla-
sov–Fokker–Planck (VFP) problem has been tackled using a harmonic decomposition of the particle distribution function
in momentum space [1,16], with considerable success. More recently some attempts have been made at adaptive Vlasov
codes [15]. A recent review of Vlasov solvers [28] compared a number of conservative schemes, based on calculating fluxes
between computational cells, and semi-Lagrangian schemes based on updating the distribution by the method of character-
istics. This paper showed that low order conservative schemes [29] are too diffusive and that higher order schemes require
limiters of some form to maintain positivity in the distribution function. Semi-Lagrangian schemes are accurate for some
problems but there was no single scheme which excelled in all tests. The positive and flux conservative (PFC) method
[28] was either the best performing, or close to the best, for all tests and did not fail any tests. These findings are supported
by an earlier comparison of conservative schemes [21] in which the Piecewise Parabolic Method (PPM) [30] was show to be
both robust and accurate across all tests. The PPM method is formally third order away from strong limiters and conservative
and thus has very similar accuracy and stability properties as the PFC method. However PPM also ensures monotonicity so
that false oscillations, possible sources of kinetic instabilities, cannot be introduced. Thus, while for some tests the semi-
Lagrangian scheme may be more accurate than high-order conservative schemes (PFC or PPM), these differences are small.
In addition semi-Lagrangian schemes require extra steps to enforce positivity [28]. These additional steps have to date only
been implemented in dimensionally split form. Unfortunately the semi-Lagrangian technique must be applied in full multi-
dimensional, i.e. unsplit, form for relativistic problems to ensure global conservation [35]. Thus previous papers have shown
that to have a robust, high-order Vlasov scheme in which positivity can be easily enforced that conservative schemes (PFC or
PPM) are to be preferred. Furthermore if we require that the scheme is monotonicity preserving then PPM is preferred over
PFC even though they are both of the same formal order. All schemes to solve Vlasov’s equation must introduce some dis-
sipation to continue running past the point when phase-space filamentation reaches grid scale. When this happens the codes
necessarily must increase the entropy S defined by S ¼ �

R
f log f dv , where f is the distribution function. The properties of

PFC and PPM approaches with regard to entropy are detailed elsewhere [21,28] but they are similar. Note that for schemes
which are not positivity preserving it is not possible to define the real entropy S due to negative f.

In this paper we outline the design, development and testing of VALIS, a split-Eulerian solver for the two-dimensional
Vlasov–Maxwell system. We detail the algorithm for updating the particle distribution function and three different ap-
proaches to the advance of Maxwell’s equations. Particular emphasis is placed on addressing the following key issues:

� Several papers [24,25,22,31,1] have commented that using split-Eulerian advections will not correctly resolve the circular
motion of simple gyration about a fixed magnetic field. To avoid this potential problem, schemes have been developed in
which the momentum update is 2D [24] or polar phase-space co-ordinates [31] have been used. Here we show that with
the formulation of split-Eulerian advections adopted in VALIS the gyromotion is treated correctly.

� It is well known [32] that not all schemes for updating the electromagnetic fields in PIC codes also ensure that Poisson’s
equation is satisfied to machine precision. To overcome this, PIC codes use either Poisson correctors, which may be local,
as for example in Ref. [14], possibly followed by filtering to avoid numerical Cherenkov radiation at short wavelengths
[33]. A method does exist for ensuring that Poisson’s equation is exactly satisfied for PIC codes [34] and in this paper
we show that the same approach can be applied in a split-Eulerian Vlasov solver at no additional computational cost.

� Moving from the leapfrog scheme (often used for Yee staggered grids) to the predictor corrector method (required for the
implementation of the scheme which exactly satisfies Poisson’s equation) does not significantly change the numerical
wave dispersion relations.
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� Some Vlasov codes use the semi-Lagrangian approach for the advections. For such schemes there is a potential problem for
relativistic problems due to the time-splitting [35]. These problems are avoided by casting the Vlasov equation in conser-
vative form and using conservative transport of the electron distribution function via PPM [30,21].

The final scheme to be described therefore is shown to correctly handle rotation, even though it is on an Eulerian grid;
exactly satisfy Poisson’s equation without affecting EM wave dispersion or introducing numerical Cherenkov radiation
and finally by employing conservative form it is easily extended to relativistic simulations.

1.1. The 2D electromagnetic Vlasov system

The full, relativistic, Vlasov–Maxwell system of equations is given by Vlasov’s equation:
@fj

@t
þ u

c
� rxfj þ

qj

mj
Eþ u

c
^ B

� �
� rufj ¼ 0 ð1Þ
where j represents the particle species, together with Maxwell’s equations:
r � E ¼ qðx; tÞ
�0

ð2Þ

r � B ¼ 0 ð3Þ

r ^ E ¼ � @B
@t

ð4Þ

r ^ B ¼ l0Jþ �0l0
@E
@t

ð5Þ
The number density of each species is then defined as
njðxÞ ¼
Z

fjðx;uÞdu ð6Þ
The charge and current density are defined as
qðxÞ ¼
X

j

qj

Z
fjðx;uÞdu

� �
ð7Þ

JðxÞ ¼
X

j

qj

Z
u
c

fjðx;uÞdu
� �

ð8Þ
and c can be defined in terms of u
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ juj

2

c2

s
ð9Þ
These equations describe the self-consistent evolution of a multi-species system in a six-dimensional phase space, often
referred to as a 3D3P model (signifying three spatial and three momentum dimensions). Such an extensive system presents a
significant computational challenge for any kinetic model, even with a relatively poorly sampled phase space [36]. Indeed for
Vlasov solvers the computational requirements make 3D3P impractical at present. Such high dimensional systems can how-
ever be address by PIC techniques and hybrid, i.e. containing both fluid and kinetic species, PIC based simulations are not too
demanding for large scale systems where fine details of the tails of distributions functions are not required. From here on we
shall consider a 2D slice through the full 3D system, retaining only two spatial and two momentum co-ordinates (2D2P), two
electric field components (in the plane), a single magnetic field component (out of the plane) and a single particle species:
the electrons. The ions will be assumed to form an immobile background.

Without loss of generality we can choose the (x,y) plane, defining our electric and magnetic field vectors to be E = (Ex,Ey,0)
and B = (0,0,Bz). We also adopt a system of normalised units where mass is normalised to the electron mass me, velocity to
the speed of light c, time to the inverse electron plasma frequency x�1

pe (where xpe = (n e2 /�0me)1/2), distance to cx�1
pe , electric

and magnetic fields to xpecme/e and xpeme/e respectively, and temperatures to kBme c2 (where kB is Boltzmann’s constant).
In these units the full 2D2P Vlasov–Maxwell system, with immobile ions, is given by Vlasov’s equation for the electron

distribution function fe, that is Eq. (1) with j = e,mj = 1,qj = � 1, x = (x,y) and u = (ux,uy). Eqs. (4) and (5) become
@Ex

@t
¼ �Jx þ

@Bz

@y
ð10Þ

@Ey

@t
¼ �Jy �

@Bz

@x
ð11Þ

@Bz

@t
¼ @Ex

@y
� @Ey

@x
ð12Þ
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with the electron density and current defined as
Fig. 1.
faces (f
the adv
ne ¼
Z

fe du ð13Þ

Jx;y ¼ �
Z

ux;y

c
fe du ð14Þ
2. Numerical scheme

The approach taken in the development of VALIS is to build on an existing [21], and proven [37,4,38,39,11] 1D1P algo-
rithm and write the code in a parallelised domain decomposed form in order that it can scale onto current, and future, mas-
sively parallel machines.

The update of the particle distributions is based on a split-Eulerian scheme. The fields must be updated by a time-centred
and (at least) second order method. We outline three possible approaches: leapfrog, predictor corrector and a third method,
based on predictor corrector which is shown to obey Poisson’s equation for no extra computational cost. VALIS with a leap-
frog field solver will be referred to as Leapfrog and as Predictor Corrector with the standard predictor corrector. As this
work will demonstrate, the third scheme has some advantages over the other two and has been adopted as the default solver
in this code. For this reason, it is simply refered to as VALIS.

2.1. The simulation grid

The distribution function is described on a 4D phase-space grid. By convention a cell within this grid is indexed (i,j,m,n).
Where i and j represent the cell number in real space (x,y); m and n represent the cell number in momentum space (ux,uy).
This is a fixed Eulerian grid and runs from xmin to xmax in x,ymin to yymax

in y;�uxmax to uxmax in ux and �uymax to uymax in uy. The
electron distribution function, fe, is defined on the grid at cell centre in all dimensions (see Fig. 1).

Fields and currents are defined on the cell edges in a similar manner to the Yee mesh common to most finite difference
Maxwell solvers [40]. This choice of staggered grid is to simplify the calculation of the curls of E and B and to avoid the
checkerboard instability. We also define two additional co-ordinate grids, see Fig. 1. These are the advection co-ordinates,
the velocities required by the advection sweeps of the particle distribution function (as discussed in the following section).
They include the relativistic factor c. For the spatial advections we define
hxðm;nÞ ¼ uxðmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

x ðmÞ þ u2
yðnÞ

q ð15Þ

hyðm;nÞ ¼ uyðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

x ðmÞ þ u2
yðnÞ

q ð16Þ
and for the momentum space advections
(Left) The (i,j) spatial grid cell for VALIS. The distribution function is defined at the cell centre. The fields are defined on a staggered grid at the cell
or electric fields) and cell corners (for magnetic field). (Right) The (m,n) momentum grid cell. The distribution function is defined at cell centre and
ection co-ordinates ax, y and hx, y are defined as shown.
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axðm;nÞ ¼
uxðmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
x ðmÞ þ

uyðnÞþuyðnþ1Þ
2

� �2
r ð17Þ

ayðm;nÞ ¼
uyðmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ uxðmÞþuxðmþ1Þ
2

� �2
þ u2

yðnÞ
r ð18Þ
These definitions are easily adapted for non-relativistic, electrostatic problems by setting hx = ax = ux and hy = ay = uy. In
this case all velocities are normalised to the electron thermal velocity and lengths to the Debye length.

2.2. Split-Eulerian schemes

Split-Eulerian schemes have been applied extensively to the solution of Vlasov’s equation. These are reviewed at some
length in Refs. [20,21,19,27,26].

In a split-Eulerian scheme [18], the Vlasov solver is split into separate spatial and momentum space updates. The 2D2P
Vlasov equation is split into the following 1D advections:
@fe

@t
þ hx

@fe

@x
¼ 0 ð19Þ

@fe

@t
þ hy

@fe

@y
¼ 0 ð20Þ

@fe

@t
þ ðEx þ ayBzÞ

@fe

@ux
¼ 0 ð21Þ

@fe

@t
þ ðEy � axBzÞ

@fe

@uy
¼ 0 ð22Þ
The splitting scheme for the advance of the 2D2P Vlasov–Maxwell system from step k to step k + 1 is then:

1. x advection: Evolve Eq. (19) for Dt/2 (from k to k + 1/2);
2. y advection: Evolve Eq. (20) for Dt/2 (from k to k + 1/2);
3. ux advection: Evolve Eq. (21) for Dt/2 (from k to k + 1/2);
4. uy advection: Evolve Eq. (22) for Dt (from k to k + 1);
5. ux advection: Evolve Eq. (21) for Dt/2 (from k + 1/2 to k + 1);
6. y advection: Evolve Eq. (20) for Dt/2 (from k + 1/2 to k + 1);
7. x advection: Evolve Eq. (19) for Dt/2 (from k + 1/2 to k + 1);

where the values of Ex, y and Bz used in the momentum space advections have to be time and space centred. This requires
them to be averaged onto the centre of the cell. The x � y ordering is reversed on alternate steps. The timestep size, Dt is
determined by the CFL condition.

There are alternative approaches, most noticably the semi-Lagrangian [22,41] and back-substitution methods [24]. The
semi-Lagrangian approach was shown to be unstable in the relativistic case [35]. The adoption of 2D velocity advections cor-
rects this and reduces the total number of advections required. This has the added benefit that the circular orbits of particles
in strong magnetic fields can be traced accurately on Cartesian velocity grids. This is also the case for the back substitution
method. However, these methods typically require high-order spline interpolation schemes and cannot guarantee positivity.
By solving Vlasov’s equation in explicit conservative form, we can avoid the instabilities inherent in the standard
semi-Lagrangian scheme. Describing circular particle orbits via a series of 1D advections does present a potential source
of cumulative error, as has been highlighted in the literature [24,1]. However, we find that the scheme described here is able
to resolve circular particle orbits and accurately maintain the phase and amplitude of the momentum rotor with some
resolution-dependent numerical dissipation, which is comparable to that experienced over the same number of linear,
parallel, advection steps.

The time-splitting algorithm is second order in time and each of the distribution function updates is a 1D advection equa-
tion of the form
@U
@t
þ c

@U
@x
¼ 0 ð23Þ
There are many ways one could conduct the 1D advections at the heart of the time-splitting algorithm; examples include
the use of MacCormak’s method [42], spline interpolation [43] and a variety of conservative schemes [20].

Any scheme must exclude the introduction of false extrema and should not accentuate existing extrema-it must be
monotonicity preserving and bounded. More importantly, the fine scale filamentation of the distribution function must
be treated correctly; in a manner that is physically appropriate. The simplest example of the problem of filamentation is lin-
ear Landau damping, whereby the perturbation of the distribution function evolves as �exp(ikvt). Hence, for any grid, there
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will, eventually, be structure at the grid scale. This must be dissipated numerically. However, Ref. [21] shows that it is not
enough that the scheme dissipates this fine scale structure; it must do so in a way that is physically consistent. The most
successful schemes manage to dissipate fine scale filamentation in a manner that is entropy increasing.

A robust method for performing these updates, in a split-Eulerian scheme, in conservative form, is PPM [30]. This scheme
is formally third order (away from extrema), positivity and monotonicity preserving and dissipates grid-scale structure in an
entropy increasing manner without the need for additional filtering. We find that casting the problem in conservative form
and adopting a PPM treatment for the advections proves to be robust, scaleable and free from some of the complexities of
alternative approaches.

2.3. Updating the fields

VALIS requires an accurate, stable and scalable algorithm for the solution of Maxwell’s equations (i.e. Eqs. (10)–(12)) in
order to provide the time-centred self-consistent fields used in the momentum space advections (Eqs. (21) and (22)). Such
schemes are common in computational plasma physics [12] and engineering [40]. They can potentially suffer from a cumu-
lative error in the solution to Poisson’s equation which must be corrected at each step or removed intermittently-this should
be achieved without either incurring significant computational cost, or altering the dispersion relation of waves in the sys-
tem (possibly resulting in numerical Cherenkov instabilities [33]).

The most common scheme is Leapfrog, where E and B fields are advanced for a full timestep at a time but remain half a
timestep out of phase. An alternative is to use a Predictor Corrector scheme, which has the advantage that it can, if de-
sired, re-cycle the particle fluxes calculated by the PPM advections during the corrector step, which ensures the solution sat-
isfies to Poisson’s equation-this is the approach adopted for VALIS. These schemes are outlined below.

2.3.1. Leapfrog
In a leapfrog scheme (see Fig. 2 and, for example, Ref. [12]) the electric and magnetic fields are one half timestep out of

phase so that one is able to provide the time-centred values to advance the other. At step k, in cell (i,j), we have
Ek�1=2

x ði; jÞ; Ek�1=2
y ði; jÞ and Bk

zði; jÞ, defined as shown in Fig. 1. These must be advanced to Ekþ1=2
x ði; jÞ; Ekþ1=2

y ði; jÞ;Bkþ1
z ði; jÞ and pro-

vide Bkþ1=2
z ði; jÞ for the distribution function update. First the current densities need to be integrated onto the spatial grid,

these are denoted by ~Jk
xði; jÞ and ~Jk

yði; jÞ. The number of cells in (x,y,ux,uy) is given by (nx;ny; nux ;nuy ) and
Fig. 2.
current
magnet
~Jk
xði; jÞ ¼ �

Xnux

m¼1

Xnuy

n¼1

hxðm; nÞf k
e ði; j;m; nÞDuxðmÞDuyðnÞ

� �
ð24Þ

~Jk
yði; jÞ ¼ �

Xnux

m¼1

Xnuy

n¼1

hyðm; nÞf k
e ði; j;m; nÞDuxðmÞDuyðnÞ

� �
ð25Þ
Time-stepping algorithm with Leapfrog field updates. (1) Integrate currents onto the simulation grid and then average to cell faces. Use these
s, and Bk

z , to update Ek�1=2
x;y to Ekþ1=2

x;y . (2) Advance magnetic field from Bk
z to Bkþ1

z using time-centred electric fields, Ekþ1=2
x;y . (3) Calculate time-centred

ic field Bkþ1=2
z ¼ 0:5ðBk

z þ Bkþ1
z Þ. (4) Advance distribution function by a complete timestep using time-centred fields.
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To advance Maxwell’s equations, currents are required at the cell faces so a linear interpolation is applied:
Fig. 3.
predict
fields. (
steps, e
ensures
Jk
xði; jÞ ¼ 0:5 ~Jk

xði; jÞ þ~Jk
xðiþ 1; jÞ

� �
ð26Þ

Jk
yði; jÞ ¼ 0:5 ~Jk

yði; jÞ þ~Jk
yði; jþ 1Þ

� �
ð27Þ
and the electric field components can be advanced by a complete timestep:
Ekþ1=2
x ði; jÞ ¼ Ek�1=2

x ði; jÞ þ Dt
Dy

Bk
zði; jÞ � Bk

zði; j� 1Þ
� �

� DtJk
xði; jÞ ð28Þ

Ekþ1=2
y ði; jÞ ¼ Ek�1=2

y ði; jÞ � Dt
Dx

Bk
zði; jÞ � Bk

zði� 1; jÞ
� �

� DtJk
yði; jÞ ð29Þ
followed by the magnetic field:
Bkþ1
z ði; jÞ ¼ Bk

zði; jÞ �
Dt
Dx

Ekþ1=2
y ðiþ 1; jÞ � Ekþ1=2

y ði; jÞ
� �

þ Dt
Dy

Ekþ1=2
y ði; jþ 1Þ � Ekþ1=2

x ði; jÞ
� �

ð30Þ

Bkþ1=2
z ði; jÞ ¼ 1

2
Bk

zði; jÞ þ Bkþ1
z ði; jÞ

� �
ð31Þ
All that remains is to advance the distribution function using the time-centred fields.

2.3.2. Predictor corrector
The Predictor Corrector field update scheme (Fig. 3) starts by updating the magnetic field from k � 1/2 to k + 1/2, and

interpolating back to k. Then, using Bk
z and Jk

x;y given by Eqs. (24)–(27) apply a first-order predictor to give Ekþ1=2
x;y :
Ekþ1=2
x ði; jÞ ¼ Ek

xði; jÞ þ
Dt

2Dy
Bk

zði; jÞ � Bk
zði; j� 1Þ

� �
� Dt

2
Jk

xði; jÞ ð32Þ

Ekþ1=2
y ði; jÞ ¼ Ek

yði; jÞ �
Dt

2Dx
Bk

zði; jÞ � Bk
zði� 1; jÞ

� �
� Dt

2
Jk

yði; jÞ ð33Þ
The distribution function can then be advanced for a complete timestep using Bkþ1=2
z and Ekþ1=2

x;y .
Finally we apply a second order corrector to the electric field using time-centred currents given by:
Jkþ1=2
x ði; jÞ ¼ 0:5 Jk

xði; jÞ þ Jkþ1
x ði; jÞ

� �
ð34Þ

Jkþ1=2
y ði; jÞ ¼ 0:5 Jk

yði; jÞ þ Jkþ1
y ði; jÞ

� �
ð35Þ
Where Jkþ1
x;y ði; jÞ are calculated using the updated distribution function at step k + 1. Now Ex, y can be advanced from k to

k + 1:
Time-stepping algorithm with Predictor Corrector field updates. (1) Advance magnetic field from Bk�1=2
z to Bkþ1=2

z using Ek
x;y . (2) First-order

or for Ekþ1=2
x;y using face-centred grid currents at k and fields Bk

z and Ek
x;y . (3) Advance distribution function by a complete timestep using time-centred

4) Electric field corrector step; advance electric field from Ek
x;y to Ekþ1

x;y using Bkþ1=2
z and time-centred currents. The VALIS algorithm follows the same

xcept that the currents used by the corrector are derived from the exact fluxes calculated during the spatial distribution function advections – this
that Poisson’s equation is satisfied to round-off.
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Ekþ1
x ði; jÞ ¼ Ek

xði; jÞ þ
Dt
Dy

Bkþ1=2
z ði; jÞ � Bkþ1=2

z ði; j� 1Þ
� �

� DtJkþ1=2
x ði; jÞ ð36Þ

Ekþ1
y ði; jÞ ¼ Ek

yði; jÞ �
Dt
Dx

Bkþ1=2
z ði; jÞ � Bkþ1=2

z ði� 1; jÞ
� �

� DtJkþ1=2
y ði; jÞ ð37Þ
2.3.3. VALIS
In PIC based kinetic models it is common to calculate the total charge density and current at grid points by interpolating

the charge and current density from individual particles. It is however well known [12,34] that the time evolution of these
charge (q) and current (J) densities in the code do not satisfy the finite difference version of charge conservation @t

q = �r � J. Note that while they do not satisfy this equation charge is still conserved, it is the interpolated currents which
are inconsistent with the charge conservation equation. As a result such schemes do not satisfy Poisson’s equation, even if
this is imposed at the start of the simulation. The solution for PIC based schemes is to not interpolate the currents to the grid
points but instead calculate the charge that crosses the cell boundaries [34]. This all also applies to direct Vlasov solvers. If
the charge and current densities are calculated at grid points by integrating up the distribution function there is no guaran-
tee that these satisfy charge conservation or Poisson’s equation. Instead the current which is used in Maxwell’s equation’s
must be the calculated from the flux of charge through computational cell edges. Since these fluxes are exactly the fluxes
which were used to update the distribution function in each cell they must satisfy the charge conservation equation at
the finite difference level. Hence Poisson’s equation must be satisfied to machine precision.

During the spatial advections in the Predictor Corrector approach, the fluxes through each cell face are calculated as
part of the PPM algorithm. These can be integrated up and used to calculate the average current over the timestep. For cell
(i,j), we define Jkþ1=2

x;y as
Jkþ1=2
x ði; jÞ ¼ � 1

Dt

Xnux

m¼1

Xnuy

n¼1

hxðm;nÞ DtUkþ1
x ði; j;m; nÞ

h i
DuxðmÞDuyðnÞ

� �
ð38Þ

Jkþ1=2
y ði; jÞ ¼ � 1

Dt

Xnux

m¼1

Xnuy

n¼1

hyðm;nÞ DtUkþ1
y ði; j;m; nÞ

h i
DuxðmÞDuyðnÞ

� �
ð39Þ
where Ukþ1
x;y ði; j;m;nÞ is the flux through the far boundary for cell (i,j,m,n) (right-hand in the case of Ukþ1

x , top in the case of
Ukþ1

y ), as calculated by the PPM routine during the advance of the distribution function from k to k + 1. These currents can be
used for the time-centred currents required by the corrector step in the Predictor Corrector algorithm, rather than inte-
grating the currents onto the spatial grid again at k + 1. This is the method used in VALIS. By performing a corrector step
with the currents from the advection, we ensure that the Poisson’s equation is obeyed to machine precision, without the
additional effort of solving it directly. The approach of using the total current actually moved during advection to update
the electric field is the same as that previously devised for PIC codes [34]. This is the first time that this scheme has been
applied in a direct Vlasov solver and for an Eulerian split Vlasov scheme this comes at no additional computational cost.
3. Particle gyromotion with Eulerian momentum grids

A simple test of the split-Eulerian scheme is to model the gyration of charged particles about a fixed magnetic field. The
particles are represented by a Gaussian distribution of equal width in ux and uy but some initial velocity offset. At this stage
we do not consider any spatial extent and perform no field updates, fixing Ex = Ey = 0 and Bz = 1 for the duration. We also take
the non-relativistic limit but fixing c = 1 and normalising all velocities to the electron thermal velocity vTe rather than c, the
velocity grid extends to ±8vTe in both directions. Under these conditions, the distribution should orbit about (ux,uy) = (0,0)
with a period of 2p, the timestep is fixed at Dt = 2p/8nu where nu = nux = nuy is the grid resolution.

As shown in Fig. 4, the split advection scheme is able to preserve both the phase and total momentum of the particle gyro-
motion. The initial Gaussian is poorly resolved and dissipates considerably over the first few gyrations. This is accompanied
by a significant fall in the maxima of the distribution. This clipping of smooth, but poorly resolved, extrema is a direct result
of the first-order representation used in PPM at extrema which results from the limiters chosen to ensure the solution is total
variation diminishing. This can be addressed [44], but at the expense of positivity.

As shown in Fig. 5, increasing the resolution to 256 by 256 cells in velocity space shows a considerable reduction in the
numerical dissipation. A series of simple parallel advections over the same number of cells shows a comparable level of dis-
sipation. We can quantify how the error scales with resolution by comparing the L1 norm on the variation of fe from its initial
value:
L1ðkÞ ¼
X
m;n

jf ðt ¼ 0Þ � f ðt ¼ k� 2pÞj
nuxnuy

ð40Þ
where k 2 N is the orbit number. Results are shown in Fig. 6, and clearly demonstrate that the error falls as n�2
u where

nu = nux = nuy.



Fig. 4. Particle gyromotion test on 32 by 32 cell velocity grid. Initial particle distribution is a Gaussian with T = 1 and an initial momentum offset of
(ux,uy)=(4,0). Top left: initial particle distribution. Top right: particle distribution after ten orbits. Bottom left: fractional change in the distribution function
after one orbit. Bottom right: fractional change in the distribution after ten orbits. Numerical dissipation and ‘clipping’ of the extrema (a result of the
limiters employed in the PPM steps) is evident, but the phase and total momentum of the orbiting distribution is conserved.
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By performing these circular orbits in the form of interleaved 1D advections, there is a danger that the cumulative error at
each step will quickly result in a phase or momentum error [24]. Performing the momentum update as a 2D advection
(working backwards along the circular characteristic at each point) [22] or adopting polar phase-space co-ordinates [31]
can avoid this potential pitfall. However, 2D advection schemes bring added complexity and cannot guarantee positivity,
while polar co-ordinates are not suitable for resolving particle motion in strong electromagnetic fields. These tests demon-
strate that the explicit, conservative, split-Eulerian scheme is capable of preserving momentum and phase, with some grid-
dependent numerical dissipation.
4. Wave dispersion and the solution of Poisson’s equation

The code’s ability to reproduce the linear dispersion relations for electrostatic and electromagnetic waves can be tested by
perturbing a uniform, periodic system sinusoidally at various x and k. Reconstructing the dispersion curve in this way is
potentially time consuming and does not stress the model in a realistic manner. A much simpler method is to perturb all
wave numbers simultaneously and compare the Fourier transform of the resulting electric field time-series data to the
known dispersion relations. This method is applied to test both the Langmuir and electromagnetic dispersion relations.
The various algorithms are able to reproduce the dispersion relations correctly, for wavelengths which are not close to
the Nyquist wavelength, as one would expect. We find that all schemes are stable, but that VALIS is able to correctly solve
Poisson’s equation, to round-off, without altering the dispersion of electrostatic or electromagentic modes.

4.1. Langmuir dispersion relation

The linear dispersion relation for electron plasma waves (in one-dimension) is
x2 ¼ x2
pe þ 3v2

Tek2
: ð41Þ



Fig. 5. Top: particle gyromotion test on 32 by 32 (left) and 256 by 256 cell velocity grids (right), initially (solid line) and after two (dotted line) and ten
(dashed line) orbits (i.e. t = 2 � 2p and t = 10 � 2p). Bottom: comparison of 2D gyromotion (solid line) and linear advection (dashed line) at t = 10 � 2 p on
32 by 32 (left) and 256 by 256 cell velocity grids (right). Initial particle distribution is a Gaussian with T = 1 and an initial momentum offset of (ux, uy)=(4,0).

Fig. 6. L1 norm (Eq. (40)) on variation of f from its initial value during the gyromotion test. Left: The value of ln(L1) against number of orbits for the case of:
32 by 32 cells (solid line); 64 by 64 cells (dotted line); 128 by 128 cells (dashed line); 256 by 256 cells (dot-dashed line); and 512 by 512 cells (double dot-
dashed line). Right: The value of ln (L1) (normalised to the 32 by 32 cell case) against ln (n), where n = nux = nuy, after 100 orbits. The numerical dissipation
scales with n�2 (dashed line).
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We consider the non-relativistic limit and start with a periodic system of length 512kD and extending to ±4.5vTe in u on a
grid of (nx;ny;nux;nuy)=(256,8,32,32). The extent of the system in y is incidental, the y and uy updates can be disabled with-
out affecting the problem (similarly the problem can be cast in the y-direction and x updates disabled).

Each harmonic of the longitudinal electric field is perturbed sinusoidally with equal amplitude (0.01) and a randomised
phase. In order to satisfy Poisson’s equation initially, the local density at each point is calculated from the electric field using
ne(i, j) = 1 � (Ex(i,j) � Ex (i � 1,j))/Dx, ion density is, by implication, uniform. When the simulation reaches t = 256/xpe the dis-
persion relation is calculated by taking the Fourier transform of Ex(x,t) to give bExðk;xÞ. Plotting the location of the maxima ofbExðk;xÞ in (x,k) space generates the dispersion relation, as shown in Fig. 7. In Fig. 7 the procedure outlined above gives zero



Fig. 7. Comparison of analytic Langmuir dispersion relation (solid curve) with that calculated by VALIS. Error bars represent the frequency space resolution
afforded by the time-series data from VALIS. The frequency x is in units of the electron plasma frequency xpe and k is in units of 2p/kD.
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frequency for x > 0.42. This is because these modes are so strongly Landau damped that the 2D FFT spectrum does not have a
clear maximum when taken over the full simulation runtime. If instead x is estimated from the zero crossings of Ex at a fixed
point in space then x = 1.31 for k = 0.5 and indeed the correct frequency is obtained all the way up to the Nyquist frequency
at k = 0.785. These dispersion properties are reproduced by all three approaches to the field update (i.e. Leapfrog, Predic-
tor Corrector and VALIS).

4.2. Electromagnetic dispersion relation

The linear dispersion relation for electromagnetic waves in a plasma is
Fig. 8.
afforde
x2 ¼ x2
pe þ c2k2

: ð42Þ
The transverse electric and magnetic fields are subjected to a low amplitude perturbation of all wave numbers in the
same manner as the electrostatic dispersion test. In this case the system is relativistic with vTe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:001
p

c. The system length
in the direction of perturbation is 256c/xpe and the momentum grids extend to ±1.2mec. Updates in the transverse spatial
dimension can be disabled, but care must be taken to ensure the transverse currents are still accurately computed. The same
grid resolution as the Langmuir dispersion test is used here, and the simulation end time is t = 256/xpe.

Fig. 8 shows a comparison of the dispersion relation derived from VALIS and the analytic form (Eq. (42)). Agreement at
low k is good but there is a growing deviation as k approaches the Nyquist wavelength at k = p. At k � 0.79, where there are
eight cells per wavelength (a poor, but acceptable, sinusoidal waveform) VALIS is able to correctly determine the electro-
magnetic dispersion. Again, these dispersion properties are reproduced by all three approaches to the field update (i.e. Leap-
frog, Predictor Corrector and VALIS).
Comparison of analytic EM dispersion relation (solid line) with that calculated by VALIS. Error bars represent the frequency space resolution
d by the time-series data from VALIS. The frequency x is in units of the electron plasma frequency xpe and k is in units of 2pxpe/c.



Fig. 9. Comparison of the analytic EM dispersion relation (solid line) with that calculated by VALIS for EM waves propagating diagonally across a periodic
domain. The frequency x is in units of the electron plasma frequency xpe and k is in units of xpe/c. For points from the VALIS code the error in the values of
x is ±0.005.
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To compare further the properties of the various time-stepping schemes each scheme was tested with 2D electromagnetic
waves. In these tests vTe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:001
p

c, the momentum grid extends from ±0.4mec and the spatial grid is periodic in x and y both
of which were of length 8c/xpe. The resolution was fixed at ðnx; ny;nux ;nuy Þ ¼ ð16;16;32;32Þ, the timestep was fixed at
Dt = 0.16c/xpe and the initial equilibrium was perturbed with an electromagnetic wave, of amplitude 0.01 in normalised
units, propagating diagonally across the domain. Thus the minimum normalised wave-number possible was k = 1.11 and
the maximum, i.e. Nyquist, wave-number was k = 8.886. This was therefore both a test of the schemes for high wave-number
EM wave propagation and the ability of the schemes to move EM waves diagonally across the domain using the split-Eule-
rian scheme in phase space. Fig. 9 compares the analytic dispersion relation and the result for the VALIS algorithm from
k = 1.11 up to the Nyquist wave-number. These results were reproduced with both the Leapfrog and Predictor Correc-

tor schemes. The greatest discrepancy in the calculated value of x between the schemes was 5% over the whole range
tested. Thus moving from the Leapfrog scheme to Predictor Corrector does not seriously affect the properties of
EM wave propagation and furthermore using VALIS, i.e. correcting the errors in Poisson’s equation from the Predictor

Corrector scheme, does not lead to additional slowing of EM waves for short wavelengths. This is different to similar tests
using PIC codes, where correcting the error in Poisson’s equation by using a ‘Poisson correction’ step at times through the
simulation must be performed [32]. A similar technique as employed here, i.e. use of the actual transported current through
cell boundaries to update the electric field, has been used for PIC codes [34], although the implementation for the Vlasov
solver in split-Eulerian form is easier as the current fluxes are calculated anyway for the update of fe. Thus, while techniques
exist to exactly enforce Poisson’s equation in PIC codes [34] in the Vlasov formulation described here for VALIS this can be
done with no additional work, while also avoiding problems associated with Cherenkov radiation at short wavelengths.

5. Raman scattering example

The properties of the particle and field updates have been studied in some detail. By way of an example of the scheme in
action, we consider the Raman scattering problem outlined in Ref. [43]. However, we initialise the problem diagonally across
the box to demonstrate the use of the full 4D phase space.

The system is initialised with an EM parent wave and a density perturbation to seed the growth of the Langmuir daughter
wave. The parent and seed Langmuir daughter waves are at 45� to the x-axis. The system is periodic and the parent EM wave
is not externally driven.

The parent EM wave, EM1, has amplitude EE1 = 0.28, the density perturbation at k = kL has amplitude dn = 0.01. The three-
wave system is completed by a backscattered EM wave, EM2.

The amplitudes of the incident, reflected and Langmuir modes show the reflected EM wave growing at the expense of the
pump wave as a result of scattering from the Langmuir wave (see Fig. 10). The process creates a feed-back loop and is unsta-
ble with the two daughter waves initially growing exponentially. This growth is bounded and the system settles into an
oscillatory phase after t � 250. During the saturation of the instability, energy is transfered from the electrostatic field to
the electrons as they are accelerated and trapped by the wave. This is manifested as a series of ‘buckets’ in the electron dis-
tribution function (see Fig. 11).

The results outlined above are in close agreement with those in Ref. [43]. This problem demonstrates some of the key
physics issues in laser–plasma interaction (such as particle trapping and hot electron production) and highlights the
strengths of the Eulerian Vlasov solver, in particular the ability to resolve the particle phase space to high resolution even
in regions of low particle density. There are minor differences during the saturation of the instabilities; these can be



Fig. 10. Energy partition between the parent EM wave (EM1, top left) and the daughter EM (EM2, top right) and Langmuir (bottom left) waves in a 2D SRS
test problem. In this case the system is initialised with all waves travelling diagonally across the simulation domain. As in the 1D problem, the Daughter EM
and Langmuir waves grow at the expense of the parent wave until the system saturates and begins to oscillate about an equilibrium energy partition. The
bottom right figure shows the partition of energy between electric (dotted) and kinetic (dashed). The Landau damping of the daughter wave and the
trapping of electrons results in a transfer of energy from the electric fields to the electrons.

Fig. 11. Isocontour rendering of the electron distribution function fe(x,y,ux, uy) integrated over uy showing electron trapping during the saturation of the
Raman scattering instability.
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attributed to the effect of the transverse electron distribution (not present in previous work). Heating in this direction
(numerical or otherwise) will detune the instability and alter its evolution slightly. Furthermore, previous work did not in-
clude relativistic effects in the transverse motion of the plasma. At the wave amplitudes considered here, these can be
expected to be minor but will nevertheless have some impact on the evolution of the system.
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6. Scaling on massively parallel machines

The explicit Eulerian algorithm adopted for VALIS can be parallelised via domain decomposition over some or all of the four
dimensions in the system (although there is some additional complexity and communication overhead in parallelising over the
momentum dimensions, since some non nearest-neighbour operations are required to calculate currents and densities for a gi-
ven point in physical space).VALIS is domain decomposed over the two spatial dimensions, this involves the exchange of ghost
values for fe,Ex, y and Bz along each processing element (PE) boundary. A simulation domain of size (nx,ny,nux,nuy) is divided up
onto npe processing elements, where npe = npex � npey, in local domains of size (nx/npex, ny/npey,nux, nuy). Therefore, each processing
element must advance the fields and distribution functions for a fixed sub-set of the physical space and the entire momentum
grid in this region. Communication between processing elements is carried out using the standard Message Passing Interface
(MPI) libraries for simplicity and portability.

A simple linear Landau damping problem (see, for example, Ref. [21]) was used to test the scaling properties of the
decomposition scheme. We consider the non-relativistic, electrostatic limit. The initial velocity distribution is Maxwellian
and we consider the damping of a wave parallel to the x-axis. The system extends from �2p to 2p in x and �4.5vTe to
4.5vTe in ux. For this the extent of the y and uy are set to match x and ux respectively. We perturb the k = 0.5 mode with a
low amplitude density perturbation of the form n1 = acos(kx), where a = 0.01. Under these conditions, the linear Landau
damping rate is CL = 0.153359.

The scaling tests started with a phase-space grid of (nx;ny;nux ;nuy ) = (64,64,32,32), on one processing element, with all IO
disabled and the run limited to 100 timesteps. Tests were completed on a Cray XT3 system based on AMD’s 2.6 Ghz dual-core
Opteron processor. As the number of processing elements is doubled (alternately in x and y), so is the extent of the phase-
Table 1
Scaling performance of domain-decomposition scheme tested using the linear Landau damping problem. As the number of processors increases, so too do the
dimensions of the system and the phase-space, so that the domain allocated to each processor is identical irrespective of the total number of PEs involved. This
allows the fairest possible comparison, for perfect scaling the runtimes would be identical. A linear fit through the values for npe = 2–1024 (see Fig. 12) indicates
near perfect scaling. The ‘cost’ of doubling the number of processors is approximately a 0.3% slow-down.

Number of PEs Runtime (s) % Change

1 567.313 0.0
2 581.243 2.455
4 578.124 1.906
8 582.237 2.630
16 589.830 3.969
32 586.583 3.397
64 589.821 3.967
128 589.529 3.916
256 590.132 4.022
512 594.065 4.716
1024 592.677 4.471

Fig. 12. The linear Landau damping problem was used to test the scaling properties of the decomposition scheme. The percentage variation in runtime is
shown against log2(npe), where npe is the number of processing elements (PEs). Results are relative to a single PE with a phase-space grid of
(nx;ny; nux ;nuy Þ ¼ ð64;64;32;32Þ and all IO disabled. As the number of processors increases, so too do the dimensions of the system and the phase-space, so
that the domain allocated to each processor is identical, irrespective of the total number of PEs involved. This allows the fairest possible comparison, for
perfect scaling the runtimes would be identical. A linear fit through the points for npe = 2–1024, shown as a solid line, indicates near perfect scaling. The
‘cost’ of doubling the number of processors is approximately a 0.3% slow-down.
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space grid, the system dimensions, and the perturbed wave-number, so that the domain allocated to each processor is iden-
tical, irrespective of the total number of processing elements involved. This allows the fairest possible comparison, if the
scaling were perfect then the runtimes would be identical. Final runtimes (see Table 1) varied from 9

0
27.313

00
(for a single

processing element) to 9
0
54.065

00
(for 512 processing elements, with the 1024 processing element case being slightly quicker

at 9052.677
00
). The percentage variation in runtime (relative to the single processing element case) is shown in Fig. 12. These

results indicate that the ‘cost’ of doubling the number of PEs (beyond two) is a slow-down of less than 0.3% in comparison to
perfect linear scaling.

7. Conclusion

The VALIS code for the numerical solution of the 2D2P Vlasov–Maxwell system has been described in detail. VALIS
adopts a conservative, split Eulerian scheme in which the particle distribution function is split into 1D advections carried
out using Peasewise Parabolic Method. This results in a scheme which is not vulnerable to the time-splitting instability
encountered by semi-Lagrangian schemes and is able to resolve particle gyromotion on Eulerian momentum grids. Further-
more, the scheme is readily parallelised, by domain decomposition, and near perfect scaling has been demonstrated up to
1024 processing elements. Utilising the exact particle fluxes calculated during the PPM steps to calculate the current in
the solution of Maxwell’s equations ensures that the advance of Maxwell’s equations satisfies Poisson’s equation without
introducing additional workload or altering the dispersion properties of the solver.
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